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1 Introduction

1.1 Context & Research Question

Housing discrimination has had a lasting legacy in American history, drastically shaping the United States’
(US) development from the abolition of slavery to this day. Many discriminatory practices in America trace
their roots to the Southern Jim Crow laws introduced at the end of the Civil War. [3] That being said,
policies like exclusionary zoning led to housing discrimination and residential segregation not just in the
South, but across the country. During this era, the Federal Housing Administration played a critical role in
institutionalizing redlining and other explicitly discriminatory policies.

It took until the Civil Rights Act passed in the mid-twentieth century before the United States government
finally deemed housing discrimination unconstitutional. Specifically, the Fair Housing Act in 1968 explicitly
prohibited discrimination based on race, making racial steering, blockbusting, and redlining, all once standard
practices, illegal. While this represented significant progress toward just housing policies, it did little to reverse
decades of systemic discrimination: a wealth of literature suggests that housing discrimination remains a
significant problem in America, leading to segregated neighborhoods and considerable wealth and educational
disparities.

In this paper, we explore how the legacy of racial discrimination persists in modern housing markets. In
particular, we attempt to understand whether and how racial composition affects free-market property values,
holding other potentially relevant factors constant. In so doing, we challenge the common thesis that the free
markets function as a race-blind instrument that automatically counters racial segregation. [1]

1.2 Data Description

Since housing markets vary drastically between cities due to different local and state regulations, we concentrate
on a single cosmopolitan city: Boston, MA. We restrict ourselves to examining how race plays a role in
determining house values in the city and its suburbs. To that end, we consider the Boston Housing Dataset,
which contains information collected by the US Census Service in 1970. The dataset contains 506 observations
of 14 variables; each observation corresponds to a neighborhood, with information about statistics such as
per-capita crime rate or pupil-teacher ratio.

A detailed specification of each variable is given in Table 1, along with complete descriptions of each
feature. Here, we treat owner-occupied homes’ median value as the response variable, while the remaining
variables act as potential explanatory variables.



Table 1. A detailed summary of each variable in the Boston Housing Dataset. Note that the quartile
variable was not originally included in the data, but instead was computed using the segregation variable;
this procedure is explained further in Section 2. The radial highway accessibility index variable is an ordinal
variable that takes integral values from 1 through 24.

Variable Code Type Description
Crime Rate crim Continuous Per-capita crime rate by town.
Zoning zn Continuous  Proportion of residential land zoned for lots over
25,000 square feet.
Industry indus Continuous  Proportion of non-retail business acres per town.
Charles River chas Categorical Indicator if tract borders Charles River.
Oxides nox Continuous  Nitrogen oxides concentration (parts per 10 mil-
lion).
Rooms m Continuous  Average number of rooms per dwelling.
Age age Continuous  Proportion of owner-occupied units built prior to
1940.
Distance dis Continuous Weighted mean of distances to five Boston employ-
ment centers.
Highways rad Ordinal Index of accessibility to radial highways.
Tax tax Continuous  Full-value property-tax rate per $10,000.
Pupil Ratio  ptratio Continuous Pupil-teacher ratio by town.
Quartile quart Ordinal African-American proportion as a quartile; 4 cor-
responds to towns with the greatest proportions.
Homogeneity =~ black  Continuous 1000(B — 0.63)? where B is the proportion of
African-Americans by town.
Status lstat Continuous Lower status of the population (percent).
Median Value medv Continuous Median value of owner-occupied homes in $1000s.

1.3 Overview

We start by understanding both variables which carry information about each neighborhood’s racial com-
position through exploratory data analysis. We then construct two separate models, with and without
race information, to predict median owner-occupied home values. Comparing these models, we attempt to
estimate the effect of race on property values after controlling for other relevant variables. To avoid relying
on potentially dubious distributional assumptions, we then pinpoint this estimate’s uncertainty using the
non-parametric bootstrap; this allows us to directly test the hypothesis that race plays no effect in determining
median home values. Finally, we comment on the assumptions made in our analysis and discuss potential
avenues to draw more robust causal inference type conclusions.

2 Race Data

2.1 Feature Construction

As noted in the data description, the dataset did not directly include the proportion of African-Americans in
each neighborhood. Instead, it included the variable black, which is defined as
1000(B — 0.63)2, (1)

where B is the true recorded proportion of African Americans. Unfortunately, B cannot be perfectly
recovered from the values of this variable; for example, black would be equal to 10 when either B = 0.73



or B =0.53. In general, since the function is quadratic, B cannot be uniquely determined for any value of
black below 136.9. We can nevertheless still recover some useful information about these proportions. In
particular, we can still sort each neighborhood into quantiles based on its proportion of African-Americans

When black is below 136.9, we may not know the exact proportion of African-Americans in the neighbor-
hood, but we can at least lower bound this at 0.26 since the absolute value of its difference from 0.63 is less
than 0.37. Fortunately, this is only the case for 8% of the neighborhoods in Boston; the remaining 92% of
neighborhoods have black greater than 136.9 and thus B can be recovered exactly. Rather than throw away
the points with the highest proportions of African-Americans, we instead opt to bin these proportions. In
particular, by choosing to use quartiles, all the neighborhoods with unknown proportions will comfortably
fall in the fourth quartile, and therefore, there is no ambiguity.

Note the same reasoning would hold had we chosen to use quintiles or even deciles. However, looking at
the data, roughly 23% have a reported proportion of 0%. To avoid having highly asymmetric quantiles or
randomly assigning observations to bins, we settle on quartiles, so all neighborhoods with the same proportion
lie in the same bin.

2.2 Exploratory Data Analysis

In this paper, we want to understand the effect of race, controlling for other variables. Naturally, it is crucial
to understand whether the race variables included indeed provide any information not already captured
by the other variables, at least in the regression context. To that end, we first attempt to regress black
against all other variables, excluding the response variable and quart. Here, we find the resulting model
has R? = 0.258, which suggests that while many variables are correlated with black, together they still only
explain a small part of its variance.

We might hope to run a similar sanity check for the quart variable. A natural approach is to include
quart as a categorical variable with three dummy variables. We therefore attempt to predict each of these
dummies with the remaining variables, excluding median house price and black. More specifically, we take
indicators for quart equal to 2, 3 and 4 as our response variables. The resulting R? values are 0.072, 0.080
and 0.236 respectively.!

Since these variables will be a large focus of our research question, we start by examining the univariate
distributions of these variables and their relationship to the median owner-occupied home value. These
displays can be found in Figure 1 through Figure 4. Below, we summarize some observations about these
plots.

e Figure 1 shows a histogram of the homogeneity variable. The values are highly concentrated near 400,
and the distribution has a strong left skew. Note that the maximum value of 396.9 corresponds to an
African-American proportion of 0%; this means a large number of the neighborhoods simply had no
African-Americans, at least at the granularity measured. This distribution is not surprising, given we
previously discovered nearly 92% of all neighborhoods had B < 0.26.

e In Figure 2, we plot the histogram of the non-zero recovered proportions. While the variable included
in our model is the quartile of each value, we plot the log-odds to visualize the distribution over a large
range of values: the proportions themselves lie between 0 and 1. Note we are missing the upper tail of
the distribution since the proportions above 0.26 simply could not be recovered.

Finally, the last set of four figures examine the relationship between our response variable medv and
our two explanatory variables of interest. Notice in Figure 4, medv increases from quartiles one through
three before dropping at quartile four. This is consistent with the weak positive relationship between black
and medv; property values tend to be higher in neighborhoods with relatively high or low proportions of
African-Americans. This relationship will be a focus of study throughout the remainder of the paper.

IRunning the same regressions using the transformed variables in the final model, we also obtain similar results. In order, the
R2 values for black, quart2, quart3 and quart4 are 0.256, 0.075, 0.089 and 0.233.



Figure 1. Distribution of homogeneity. Figure 2. Distribution of proportions.
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Figure 3. medv versus black. Figure 4. medv per quart level.
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3 Models

The previous section’s exploratory data analysis suggests an association between the variables black, quart
and medv. However, in the context of answering our research question, this relationship is relatively
uninteresting: the univariate relationships between these race-based variables and the response could well be
a function of confounding variables. Therefore, to draw causal conclusions, we need to understand the effect
of race holding all other variables constant. This would directly answer the question of how race affects the
market value of homes.

Given the observational data available, however, such analysis is impossible. Instead, we consider a
reasonable approximation of understanding the effect of race on house price holding as many relevant
confounds as possible constant. While this might not allow us to make strong statements about causality, we
can look for a relationship between race and home values that other variables cannot easily explain. In this



setting, we are implicitly comparing a complete model that includes race information to a baseline model
that omits it. To construct an appropriate null model is extremely difficult since choices of which variables to
include may well influence the resulting analyses’ conclusions.

Hence, we turn to the econometrics paper by Harrison and Rubinfeld [2], which first introduces this
dataset. There, the authors provide a structural equation for their model specification. Choosing a simple
linear power transformation for the nox coefficient and removing the black variable, we arrive at the following
“race-blind” baseline model.

Model 1
log(medv) = By + firm® + Boage + B log(dis) + f4log(rad) + fstax + Bgptratio (2)
+ Brlog(lstat) + Bgcrim + Bozn + Bipindus + S11chas + Sionox + €
We then derive our second model by adding in the black and quart variables. This larger model
now explicitly accounts for each neighborhood’s racial composition by considering its homogeneity and the
proportion of African-American residents. Notice that the categorical variable quart is included as three
dummy variables corresponding to indicators of when quart is 2, 3 or 4; the baseline category is the lowest

quantile. This choice seems natural, given the difference in means across quartiles seen in Figure 4. The
resulting alternate model is given below.

Model 2
log(medv) = By + f1rm? + Boage + B3 log(dis) + B4 log(rad) + Bstax + Bsptratio
+ Brlog(lstat) + Bscrim + fozn + Sioindus + B11chas + [ianox
+ Bisblack + Bisaquart, + Bisquart, + Bigquart, + ¢
Full outputs of fitting both Model 1 and Model 2 are provided in Appendix A. We want to understand
whether Model 2 fits the data better than Model 1. Equivalently, we can ask whether adding black and
quart significantly improves the baseline model: do black and quart affect median house prices, holding

all the variables in Equation 2 constant? Heuristically, we can try to answer this question with an F-test
comparing the two models.

(3)

Table 2. Analysis of variance table comparing both models. Note the difference in degrees of freedom
between the two models is exactly 4, which corresponds to the 1 black variable and 3 dummies added by
quart.

Source  Res. df RSS df SumofSq. F P (>F)
Model 1 493 16.832
Model 2 489 16.029 4  0.80345 6.1279 8.114 x 1077

This value is extremely significant, suggesting that the relationship between race and median home prices
persist even after controlling for all variables in the baseline model. However, to interpret this value as
rejecting a null hypothesis that the coefficients on the added variables are zero would require verifying the
assumptions of the F-test hold.

One approach might be to look at the regression diagnostics, given in Figure 7 and Figure 8. From
Figure 7, it appears that there is no clear non-linear relationship across the residuals. There are only a few
high-leverage points, and these do not have considerably large Cook’s distances. Unfortunately, however, the
normality assumption appears questionable: the Q-Q plot suggests the distribution has heavier tails than
expected. Furthermore, the trend in the scale-location plot hinting at heteroskedasticity might also pose a
problem. Figure 8 is extremely similar to Figure 7 and so the diagnostics for Model 1 look very similar to
that of Model 2.



Figure 7. Regression diagnostics for Model 1. Figure 8. Regression diagnostics for Model 2.
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4 Inference & Analysis

To summarize, the results in the previous section suggest the fuller model with race information (Model 2)
better predicts median house prices over the baseline model (Model 1). However, rejecting the null hypothesis
that the coefficients on race variables black and quart are zero with the F-test is dubious since this
makes strong assumptions about the underlying conditional distribution of the response. As alluded to by
Figure 8, there is no reason to believe this distribution is normal. House prices ultimately arise from a
complex interaction of many factors, and either model likely does not capture this relationship exactly up to
independent normal errors.

Nonetheless, we still ideally want to determine whether the difference in performance between the two
models is significant. We, therefore, turn to the non-parametric bootstrap to do inference. First, we perform
a bootstrap F-test; formally, we define the following test statistic for the larger model, Model 2:

=g oo (5-0))

L EI‘I‘SSfun

n—p—1

F= (4)

Here, n = 504 and p = 14 represent the number of observations and variables respectively; k = 4 is
the number of coefficients we are interested in. Similarly, L is the k x (p + 1) matrix which extracts the
coordinates of the f3 corresponding to the added variables black and quart. In Equation 3, these correspond
to estimates of 813 through (16 respectively. Qualitatively, we should expect this value to be large under an
alternative hypothesis where any of these coefficients is non-zero. From the analysis of variance table above,
we read off the value of this statistic as 6.2114.

To test for the significance of this value, we compare it to the approximate sampling distribution of the
statistic under the null hypothesis given by the bootstrap. Figure 9 shows the observed statistic superimposed
on its estimated sampling distribution. The bootstrap p-value is 0.003, which is significant at the a = 0.05
level. This allows us to strongly reject the null hypothesis that race does not have an association with median
home values (15 = S14 = 815 = P16 = 0), controlling for the other variables given in Equation 3.



Figure 9. Approximate distribution of the F-statistic under the null hypothesis generated by the non-
parametric bootstrap with 10,000 replicates. Vertical lines are drawn at the 0.95 quantile of the sampling
distribution (blue) and the actual value observed in the data (red).
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The larger model contains exactly 4 additional variables: one which corresponds to the homogeneity of
each neighborhood’s racial composition and three additional dummy variables characterizing which quartile
it lies in depending on its proportion of African-American residents. By including all these variables, we were
able to conclude that race appears to affect house prices even after controlling for various potentially relevant
confounds. To estimate the coefficient on each of these individual variables, we can generate 95% confidence
intervals based on the non-parametric bootstrap.

The results, shown in Table 3 allow us to understand the regression surface defined by these race-based
variables and gauge whether each of these individual variables might be significant. In particular, it appears
the coeflicient on homogeneity is significant, while those corresponding to quart are not, at least at the
« = 0.05 significance level. This suggests that of variables added to the “race-blind” baseline model, black
most improved the model’s fit. In other words, median home prices are lower in mixed-race neighborhoods;
this matches with the univariate pattern initially observed in the data.

Table 3. Bootstrap-based 95% confidence intervals for each coefficient generated using 10,000 replicates.
Each interval is given along with the corresponding point estimate.

Coefficient Lower Point Estimate Upper
black 1.299 x 10~4 5.165 x 107*  8.850 x 10~*
quart2  —1.677x 1072  5.302x 1072  1.195 x 107!
quart3 -1.368 x 1073 6.958 x 1072 1.372 x 107!

quartd  —8.696 x 1073 8.152x 1072 1.675 x 10~




Figure 10. Relative prediction of log(medv) based on African-American proportion, holding all other
variables constant. Note the parabolic relationship arises from the black variable, which is defined as
quadratic function of the proportion of African-Americans.
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Finally, given the scope of our research question, we comment on our analysis from a causal inference
paradigm. If we appropriately accounted for all relevant confounding variables in Model 2, we could claim
that changing a neighborhood’s racial composition, ceteris paribus, would affect house prices. Based on
the specific results above, such a statement would directly imply interventions that increase neighborhood
diversity would be expected to cause property values to decrease. However, as we discussed earlier, this is a
tough sell given the available.

It is impossible to be sure that all relevant confounding variables have been appropriately controlled for.
For example, the association between black and median home prices observed in the data could simply be a
product of an additional variable entirely unrelated to race. Even worse, such omitted variable bias cannot
even be investigated using only the data itself. Our willingness to believe a causal interpretation of our
results therefore depends on our belief about how well Equation 2 captures all possible relevant confounds.
Unfortunately, this is par for the course given the nature of the observational data.

5 Conclusion

This report began with a discussion of the pervasiveness of institutional racism in the American housing
market. Through statistically sound analyses, paying attention to underlying model assumptions, we found
that the proportion of African-Americans living in a neighborhood had a statistically significant impact on its
median house price, controlling for potentially relevant confounding variables. Rather than a simple monotonic
relation, we discovered that both lower and higher proportions of African-Americans were associated with
higher median neighborhood prices. In other words, mixed-race neighborhoods had lower property values.
These findings challenge the notion that the free market ignores racial bases.

That being said, our results ultimately fall short of making any causal claim, given the data available.
Possible follow-up work to address this question could involve studying the effect of interventions designed
to desegregate neighborhoods on housing prices. One open question, which is particularly relevant for
policymakers, is whether these patterns even still exist today.
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6 Appendices
6.1 Appendix A: Model 1 and Model 2 Output

Table 4

Dependent variable:

log(medv)

Model 1 Estimates (SE) Model 2 Estimates (SE)
cri —0.013*** (0.001) —0.011*** (0.001)
zn —0.0001 (0.001) 0.00003 (0.001)
indus —0.00002 (0.002) —0.0002 (0.002)
chas 0.093*** (0.034) 0.080** (0.033)
nox —0.893*** (0.154) —0.845*** (0.151)
age 0.0003 (0.001) 0.0001 (0.001)
tax —0.0004*** (0.0001) —0.0004*** (0.0001)
ptratio —0.030*** (0.005) —0.028*** (0.005)
black 0.001*** (0.0001)
quart?2 0.053** (0.023)
quart3 0.070*** (0.024)
quart4 0.082*** (0.030)
rm? 0.006*** (0.001) 0.006™** (0.001)
log(dis) —0.205*** (0.034) —0.211%** (0.034)
log(rad) 0.095*** (0.019) 0.098*** (0.019)
log(1stat) —0.385*** (0.025) —0.368"* (0.025)
Constant 5.020*** (0.168) 4.688*** (0.183)
Observations 506 506
R? 0.801 0.810
Adjusted R? 0.796 0.804
Residual Std. Error 0.185 (df = 493) 0.181 (df = 489)
F Statistic 164.862*** (df = 12; 493) 130.323*** (df = 16; 489)
Note: *p < 0.1; **p < 0.05; ***p < 0.01
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6.2 Appendix B: Code

# for general data cleaning ease
library (tidyverse)

# for bootstrapping

library (boot)

## DATA CLEANING

# save data as boston
boston <— MASS:: Boston

# attempt to recover black proportion from data
inter <— (sqrt(boston$black/1000) — 0.63) =—1
# categorize data into quartiles of recovered black proportion
boston <— mutate(boston ,
quart = as.factor(ntile (inter, n = 4)))

## 2. RACE DATA

# make a data frame copy with quart modified to be numerical
boston.copy = mutate(boston, quart = as.integer(quart))

# attempt to regress black on all wvars except for
# quart and medv
model = Im(black = . —quart —medv, data = boston.copy)

summary (model)

# attempt to regress quart2 on all vars except for
# black, quart, and medv

boston .copy$quart2 = boston.copy$quart = 2
model2 = Im(quart2 ~ . —black — quart — medv, boston.copy)
summary ( model2)

# attempt to regress quart3 on all vars except for
# black, quart, quart2, and medv

boston.copy$quart3 = boston.copy$quart = 3
model3 = Im(quart3 7 . —black — quart — medv —quart2, boston.copy)
summary ( model3)

# attempt to regress quart3 on all vars except for
# black, quart, quart?2, quart3, and medv

boston.copy$quart4d = boston.copy$quart = 4
model4 = Im(quartd ~ . —black —quart —medv —quart2 —quart3, boston.copy)
summary ( model4)

# drop quart columns and "reset” data
boston.copy = select (boston.copy, !c(quart2, quart3, quartd))

# Using transformed data in accordance with Harrison and Rubinfeld (1976) model.
# More mentioned elsewhere in report
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boston .copy <— boston %%
mutate (sq.rm = rm” 2,
log.dis = log(dis),
log.rad = log(rad),
log.lstat = log(lstat),
log .medv = log(medv)) %%
select (!c(rm, dis, rad, lstat, medv))

# attempt to regress black on all wvars except for
# quart and log.medv

modell = Im(black 7 .—log.medv — quart, boston.copy)
summary ( modell)

# attempt to regress quart2 on all vars except for

# black, quart, and medv

boston.copy$quart2 = boston.copy$quart = 2

model2 = Im(quart2 7 . —black — quart — log.medv, boston.copy)
summary ( model2)

# attempt to regress quart3 on all vars except for
# black, quart, quart?2, and medv

boston.copy$quart3 = boston.copy$quart = 3
model3 = Im(quart3 = . —black — quart — log.medv —quart2, boston.copy)
summary ( model3)

# attempt to regress quart3 on all vars except for
# black, quart, quart?2, quart3, and medv

boston .copy$quart4d = boston.copy$quart =— 4
model4 = Im(quartd = . —black —quart —log.medv —quart2 —quart3, boston.copy)
summary ( model4)

#4 EDA FIGURES

# ggplot object for boston data set w/theming
boston.plot <— ggplot (boston) + theme_minimal(base_size = 16)

# Figure 1. Histogram of Homogeneity
edal <— boston.plot +

geom _histogram (aes(x = black),
binwidth = 10, color="black”, fill="white”) +
labs (x = "Homogeneity’, y = ’'Frequency’)

ggsave (’edal.png’, plot = edal, width = 8, height = 4)

# Figure 2. Histogram of logit(proportion)
eda2 <— boston.plot +
geom _histogram (aes(x = log(inter/(1—inter))),
binwidth = 0.6, color="black”, fill="white”) +
labs(x = "Logit’, y = ’Frequency’)
ggsave (7eda2.png”, plot = eda2, width = 8, height = 4)

# Figure 3. Scatterplot of Median Value vs. Homogeneity
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edad <— boston.plot +
geom_point (aes(x = black, y = medv)) +
labs (x = "Homogeneity’, y = 'Median.Value’)
ggsave (”eda3.png”, plot = eda3, width = 8, height = 4)

# Figure 4. Bozplot of Median Values per quart
edad <— boston.plot +
geom _boxplot (aes(x = quart, y = medv)) +
labs (x = "Quartile’, y = ’Median.Value’)
ggsave ("edad .png”, plot = edad, width = 8, height = 4)

# Figure 5. Scatterplot of log(Median Value) vs. Homogeneity
edab <— boston.plot +

geom_point (aes(x = black, y = log(medv))) +

labs (x = "Homogeneity’, y = ’'log(Median.Value) ")
ggsave ("edad.png”, plot = edab, width = 8, height = 4)

# Figure 6. Boxplot of log(Median Values) per quart
eda6 <— boston.plot +
geom _boxplot (aes(x = quart, y = log(medv))) +
labs (x = "Quartile’, y = ’log(Median_Value) )
ggsave ("eda6.png”, plot = eda6, width = 8, height = 4)

## 3. MODELS

# transform based on Harrison and Rubinfeld (1976) model
boston <— boston %%
mutate (sq.rm = rm” 2,
log.dis = log(dis),
log.rad = log(rad),
log.lstat = log(lstat),
log . medv = log(medv)) %%
select (!c(rm, dis, rad, lstat, medv))

# regress log(medv) on all wvars except for racial data (MODEL 2)
noblack .mod <— Im(log.medv ~ . — black — quart, boston)

# regress log(medv) on all vars (MODEL 3)
full .mod <— lm(log.medv ~ ., boston)

# look at model output
summary (noblack .mod)

summary ( full .mod)

anova(lm(log.medv = . — quart, boston), full.mod)

# compare models
anova(noblack .mod, full.mod)

# Figure 7. plot diagnostics for model 2
png(filename="diagl .png’, width = 600, height = 600)
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par (mfrow = ¢ (2, 2))
plot (noblack .mod)
dev.off ()

# Figure 8. plot diagnostics for model 3
png(filename=’"diag2.png’, width = 600, height = 600)
par (mfrow = ¢ (2, 2))

plot ( full .mod)

dev.off ()

#4 . INFERENCE

# Bootstrap F—Test

# Our variables of interest

special <— c¢(”black”, "quart2”, "quart3”, "quartd”)
# Get our estimates from the full model (model 3)
beta.hat. full <— full .mod$coefficients

] . matrix <— matrix (0, nrow = length(special), ncol = length(beta.hat. full))
for (row in 1:4) {

index <— match(special [row], names(beta.hat. full))

1. matrix [row, index] <— 1

glh.statistic <— function(formula, hypothesis, output.dim, data, indices) {
data.sample <— data[indices , |
result <— Im(formula, data.sample)
data.matrix.sample <— model. matrix (formula, data.sample)
beta.sample <— result$coefficients

denominator <— summary(result)$sigma "~ 2
numerator <— t(1.matrix %% beta.sample — hypothesis) %%
solve (1. matrix %% solve(t(data.matrix.sample) %%
data.matrix.sample) %% t(l.matrix)) %%
(1.matrix %+% beta.sample — hypothesis)
numerator <— numerator / output.dim
numerator / denominator

}

# get our estimated F—Statistics
full . f.stat <— glh.statistic (log.medv = ., rep(0, length(special)),
length(special), boston, l:nrow(boston))

# set seed for reproducibility
set.seed (123)

# get our bootstrapped F—Statistics

results <— boot (
data=boston, statistic=glh.statistic , R=10000,
formula=log.medv ~ ., hypothesis=1.matrix %% beta.hat. full ,
output .dim=length (special)
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)

# get our p—value for this test
p.value <— 1 — ecdf(results$t)(full.f.stat)
p.value

f.plot <— ggplot () +
geom _histogram (aes(x = results$t, y = ..density..),
fill = ’white’, color = ’black’, bins = 50) +
geom_vline (xintercept = full.f.stat,
color = ’'red’, size = 1.5) +
geom_vline (xintercept = quantile(results$t, .95),
color = ’"blue’, size = 1.5) +
labs (x = ’Bootstrapped . F.Statistics’, y = ’Density’) +
theme_minimal (base_size = 16)
ggsave (' fplot.png’, plot = f.plot, width = 16, height = 6)

# Bootstrapped CI’s for estimate of our variables

# set seed for reproducibility

set.seed (123)

# 10000 bootstraps

n <— 10000

# 0.05 significance level —> 95% confidence intervals
alpha <— 0.05

# get our t—stat estimates

t.hat <— summary( full .mod)$coefficients[special , 3]

# get our bootstrapped t—statistics
bootstraps <— replicate (n, (function() {
bootstrap.i <— sample (1:nrow(boston), nrow(boston), repl = T)
bootstrap .frame <— boston [bootstrap.i,]
model <— Im(log.medv = ., bootstrap.frame)
model .sum <— summary (model)
model.t <— model.sum$coefficients [special , 3]
bootstrap.vals <— model.t — t.hat
bootstrap . vals

HO)

# get our ci’s
cis <— sapply (1:4, function(x) {

row <— bootstraps[1,]

ci <— t.hat[x] — quantile(row, c(1 — alpha/2, alpha/2))
1)

t.hat.se <— summary( full .mod)$coefficients[special , 2]

# clean format a bit

colnames(cis) <— special

cis <— rbind(cis, t.hat)

rownames( cis) <— c(”lower”, "upper”, ”estimate”)
# multiply by SE’s to get estimate CI
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cis <— t(cis) * t.hat.se
cis

# plot for predicting log(medv) with all other wvariables held
# constant except for black and quarter

# theoretical black proportion

B_0 <— seq(0, 1, 0.00001)

# get black wvar from B_0

black 0 <— 1000 = (B_0 — .63) "~ 2

# get our quarter wvar to predict

# quantile split from our data set

quants <— quantile(inter , seq(0, 1, .25))

quants [1] <— —Inf

quants [5] <— Inf

inter .0 <— (sqrt(black_0/1000) — 0.63) =—1

# split according to data set

binned _inter .0 <— cut(inter _0, quants, labels = 1:4)

# predict our log medv’s
pred _log_medv <— predict (full .mod,
data.frame(black = black_0, quart = binned_inter_0,
crim = 0, zn = 0, indus = 0, chas = 0,
nox = 0, age = 0, tax = 0, ptratio = 0,
sq.rm = 0, log.dis = 0, log.rad = 0,
log.lstat = 0))

theo_pred <— ggplot () +
geom_line (aes(x = log(B_0), y = pred_log_medv, color = binned_inter _0),
size = 1.25) +
xlim(—8, 1) + labs(x = ’log(Proportion_of_African_Americans)’,
y = ’'Predicted _.log (Median._.House_Value) ’,
color = "Quartile’) +
theme_minimal (base_size = 16)

ggsave ("theo_b.png’, theo_pred, width = 16, height = 6)
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6.3 Appendix C: R Session Info

R version 3.6.3 (2020—02—29)
Platform: x86_64—w64—mingw32/x64 (64—Dbit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:

[1] LC.COLLATE=English_United States.1252

[2] LCCTYPE=English_United States.1252

[3] LCMONETARY=English_United States.1252

[4] LCNUMERIC=C

[5] LC.TIME=English _United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] boot_1.3—24 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2
[6] purrr_0.3.4 readr_1.4.0 tidyr-1.1.2 tibble_3.0.4
[9] ggplot2.3.3.2 tidyverse_1.3.0

loaded via a namespace (and not attached):

[1] Repp-1.0.5 cellranger_1.1.0 pillar_1.4.7

[4] compiler_3.6.3 dbplyr_2.0.0 tools_-3.6.3

[7] digest_0.6.25 jsonlite_1.7.2 lubridate_-1.7.9.2
[10] lifecycle_-0.2.0 gtable_0.3.0 pkgconfig_2.0.3
[13] rlang_-0.4.8 reprex_0.3.0 cli_2.2.0
[16] DBI.1.1.0 rstudioapi_0.13 yaml_2.2.1
[19] haven_-2.3.1 withr_2.3.0 xml2_1.3.2
[22] httr-1.4.2 fs_.1.5.0 generics_0.1.0
[25] vetrs_-0.3.5 hms_0.5.3 grid_3.6.3
[28] tidyselect_1.1.0 glue_1.4.2 R6-2.5.0
[31] fansi_0.4.1 readxl_1.3.1 farver_2.0.3
[34] modelr_0.1.8 magrittr_2.0.1 MASS_7.3—-51.5
[37] backports_1.2.0 scales_1.1.1 ellipsis_0.3.1
[40] rvest_-0.3.6 assertthat_0.2.1 colorspace_2.0—0
[43] labeling_0.4.2 stringi_1.4.6 munsell _0.5.0
[46] broom_0.7.2 crayon_1.3.4
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